Forbes feature: Qiskit Metal

You Don't Have To Be A Rocket (Or Quantum) Scientist To Design A Quantum Computer Chip Using IBM’s New Tool Called Qiskit Metal

by Paul Smith-Goodson

Contributor

Article original source: Forbes

Intuitively, almost everyone can appreciate how difficult and knowledge-intensive it is to design, develop, analyze, and simulate a quantum computer chip. Without years of education and training, it seems almost impossible to create such a complicated device. Until recently, even experienced researchers needed weeks or even months to design a simple quantum chip from start to finish.  

Quantum Chip Design Flow, IBM

Easier design with software automation 

After an initial soft launch in late 2020, IBM officially released its new open-source design automation software Qiskit Metal in March 2021.  Qiskit Metal is the first software to automate the design of superconducting devices. IBM is looking at eventually expanding its use from superconducting to other quantum technologies as well.

Qiskit Metal is part of IBM’s general quantum SDK Qiskit library.  It is unique because other Qiskit resources create quantum computing circuits and applications rather than producing quantum chip designs. 

Origins of Qiskit Metal  

Qiskit Metal was the brainchild of Dr. Zlatko Minev, an IBM researcher. Minev is no stranger to innovation.   

In his 2018 Yale Ph.D. dissertation in Physics, Minev devised an experiment and advanced technology that made it possible to catch quantum jumps in mid-flight and to even reverse the jump before its completion. 

 His dissertation upended Bohr’s quantum jump theory proposed over 100 years ago. Minev showed that quantum jumps are not unpredictable. Instead, once initiated, quantum jumps are coherent, continuous, and deterministic.  


For his discovery, which “overturned a mainstay of quantum physics that had troubled Niels Bohr and Albert Einstein alike,” MIT Technology Review selected Minev as one of the 35 Global Innovators Under 35 for 2020. The work also became a top Math/Physical Sciences discovery in Discover’s “Top 50 Stories of 2020”. 

At IBM, Minev developed an interest in automating the chip design process and began working on the initial version of what would eventually become Qiskit Metal.  When Jay Gambetta, IBM Fellow and Vice President, Quantum Computing, saw Minev’s early quantum automation work, he recognized its potential value and gave Qiskit Metal official project status. 

IBM

Either a Python Jupyter notebook or Metal’s built-in graphical interface can be used to select quantum components from a library of resources. In case no suitable element is found, Metal also permits the user to create and customize components. Once selected and arranged, algorithms automatically connect the chosen components.  

Metal also helps automate such things as selecting qubit frequencies, couplings, and other factors that contribute to the overall system energy. It is also necessary to determine expected outcomes when the system is measured.  

Once chip design is complete, Qiskit Metal renders it in real-time, automatically setting up materials, boundary conditions and running a classical simulation. Quantum properties of the device are analyzed, yielding its Hamiltonian and dissipative properties. At this stage, it is possible to tweak the design to improve its performance. If no further improvements are needed, the design can be filed and used for future fabrication. 

Future enhancements 

Keep in mind that the current Qiskit Metal code is an alpha version that’s still under development. IBM believes Qiskit Metal will eventually provide the entire quantum ecosystem with an innovative tool that simplifies designing superconducting devices. Metal might subsequently be used for other technologies as well. 

Long-range, IBM expects Metal will enable users with minimal programming skills to effectively use available libraries of quantum components and renderers for chip building. It also foresees a time when there will be a critical mass of shared resources developed by the open-source community of Metal users.  

According to IBM’s Qiskit Metal website, future additions include the full integration of the Energy Participation Ratio (EPR) method, the impedance analysis, and the lumped-oscillator model. 

Analyst Notes: 

  1. Considering all its advantages, Qiskit Metal should be a clear long-term winner for IBM and the quantum community.

  2. By reducing the complexity of chip design, IBM has eliminated a significant barrier that may make quantum attractive to more people.

  3. Qiskit Metal makes it possible for young K-12 students to have an understandable hands-on learning experience with quantum computing. Qiskit Metal can turn a seemingly impossible task into a fun learning experience. A positive early learning experience with Metal could help establish enough academic interest that might lead to thousands of future quantum researchers.

Note: Moor Insights & Strategy writers and editors may have contributed to this article. 

Moor Insights & Strategy, like all research and analyst firms, provides or has provided paid research, analysis, advising, or consulting to many high-tech companies in the industry, including 8x8, Advanced Micro Devices, Amazon, Applied Micro, ARM, Aruba Networks, AT&T, AWS, A-10 Strategies, Bitfusion, Blaize, Box, Broadcom, Calix, Cisco Systems, Clear Software, Cloudera, Clumio, Cognitive Systems, CompuCom, Dell, Dell EMC, Dell Technologies, Diablo Technologies, Digital Optics, Dreamchain, Echelon, Ericsson, Extreme Networks, Flex, Foxconn, Frame (now VMware), Fujitsu, Gen Z Consortium, Glue Networks, GlobalFoundries, Google (Nest-Revolve), Google Cloud, HP Inc., Hewlett Packard Enterprise, Honeywell, Huawei Technologies, IBM, Ion VR, Inseego, Infosys, Intel, Interdigital, Jabil Circuit, Konica Minolta, Lattice Semiconductor, Lenovo, Linux Foundation, MapBox, Marvell, Mavenir, Marseille Inc, Mayfair Equity, Meraki (Cisco), Mesophere, Microsoft, Mojo Networks, National Instruments, NetApp, Nightwatch, NOKIA (Alcatel-Lucent), Nortek, Novumind, NVIDIA, Nuvia, ON Semiconductor, ONUG, OpenStack Foundation, Oracle, Poly, Panasas, Peraso, Pexip, Pixelworks, Plume Design, Poly, Portworx, Pure Storage, Qualcomm, Rackspace, Rambus, Rayvolt E-Bikes, Red Hat, Residio, Samsung Electronics, SAP, SAS, Scale Computing, Schneider Electric, Silver Peak, SONY, Springpath, Spirent, Splunk, Sprint, Stratus Technologies, Symantec, Synaptics, Syniverse, Synopsys, Tanium, TE Connectivity, TensTorrent, Tobii Technology, T-Mobile, Twitter, Unity Technologies, UiPath, Verizon Communications, Vidyo, VMware, Wave Computing, Wellsmith, Xilinx, Zebra, Zededa, and Zoho which may be cited in blogs and research.